School of Information Systems

Fine-Grained Opinion Mining: Current Trend and Cutting-Edge Dimensions

Wenya Wang, Jianfei Yu, Sinno Jialin Pan and Jing Jlang

Nanyang Technological University and Singapore Management University School of Information Systems

Part III

Target-Oriented Sentiment Classification

Methodology

Summary

School of Information Systems

- Sentence/Document-Level Sentiment Classification
 - Input
 - A sentence or document
 - Output
 - Overall sentiment polarity
 - Positive, Negative, Neutral
 - Example

The movie was fabulous, and the characters are quite engaging!

The restaurant was horrible, and their service was also poor!

- Target-oriented Sentiment Classification (TSC)
 - Input
 - A sentence or document
 - An opinion target
 - 1. Aspect Term (Aspect-Level Sentiment Classification)
 - 2. Aspect Category (Aspect Category-Based Sentiment Classification)
 - 3. Target Entity (Entity-Level Sentiment Classification)
 - Output
 - Sentiment polarity towards the opinion target
 - Positive, Negative, Neutral

- Examples (Product Review)
 - Aspect-Level Sentiment Classification

The [fish] was rather over cooked, but the [staff] was quite nice!

- sentiment over fish: negative
- sentiment over staff: positive

Examples (Product Review)

Aspect Category-Based Sentiment Classification

The [fish] was rather over cooked, but the [staff] was quite nice!

- sentiment over food: negative
- > sentiment over service: positive
- sentiment over ambience: N.A
- sentiment over price: N.A
- sentiment over miscellaneous: N.A

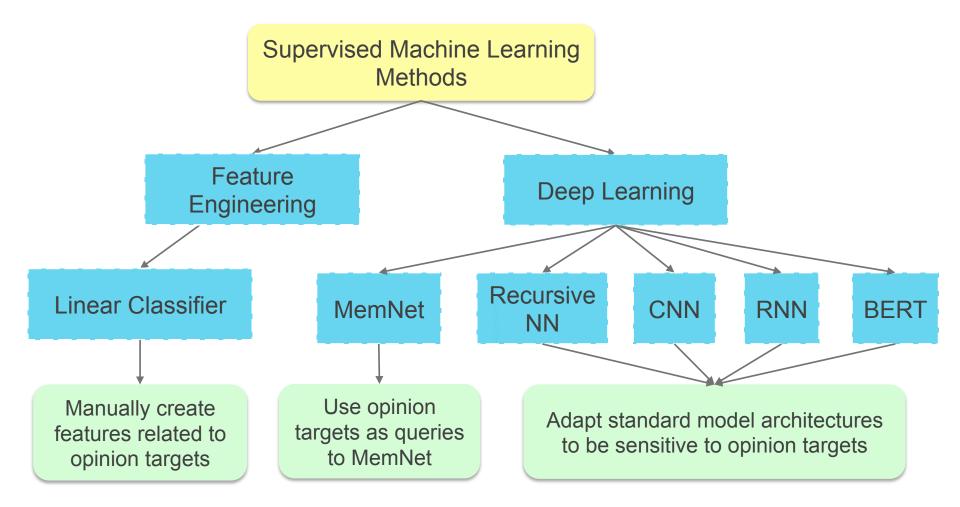
Examples (Tweet)

- Entity-Level Sentiment Classification

[Georgina Hermitage] is a #one2watch since she broke the [400m T37] WR!

sentiment over Georgina Hermitage: positive

sentiment over 400m T37: neutral


Methodology

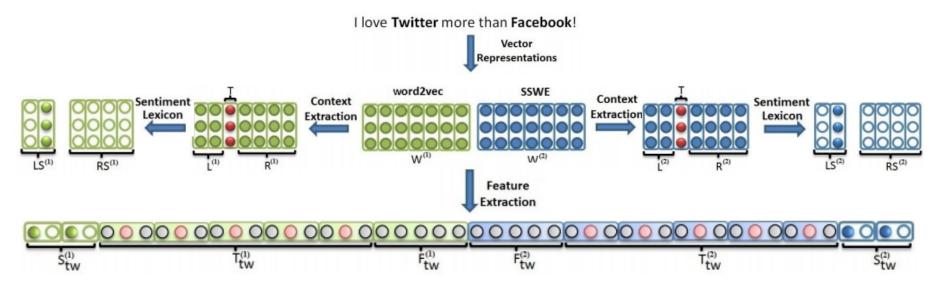
Summary

School of Information Systems

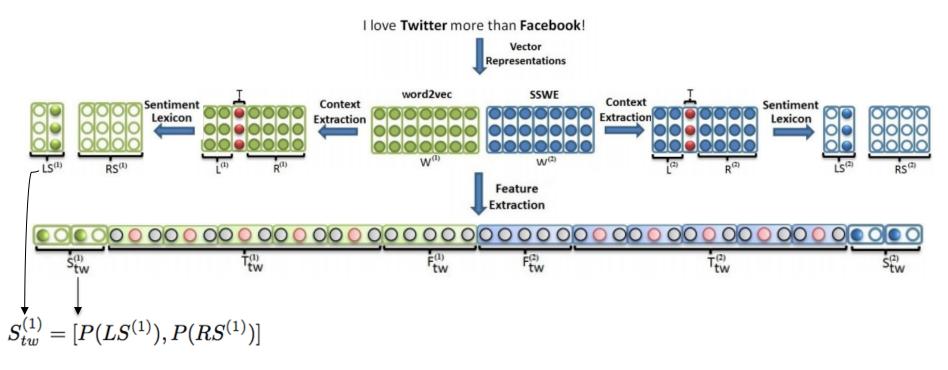
Methodology – Big Picture

Outline

Background

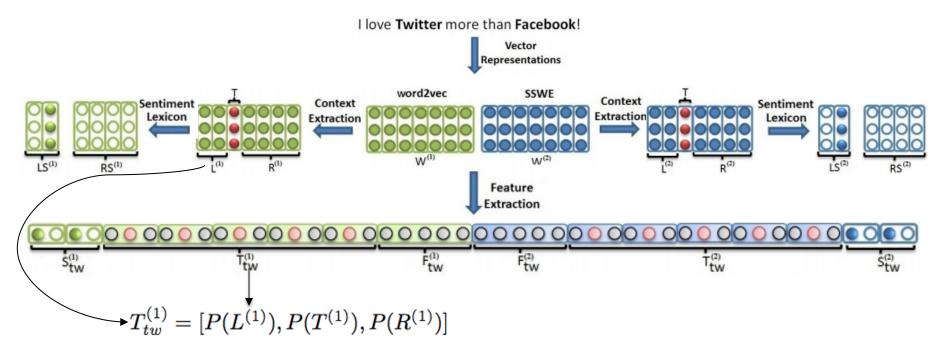

- Methodology
 - Linear Classifier
 - Recursive Neural Network
 - Memory Network
 - CNN-based Methods
 - RNN-based Methods
 - BERT-based Methods

Linear Classifier


Extract various features

Linear Classifier

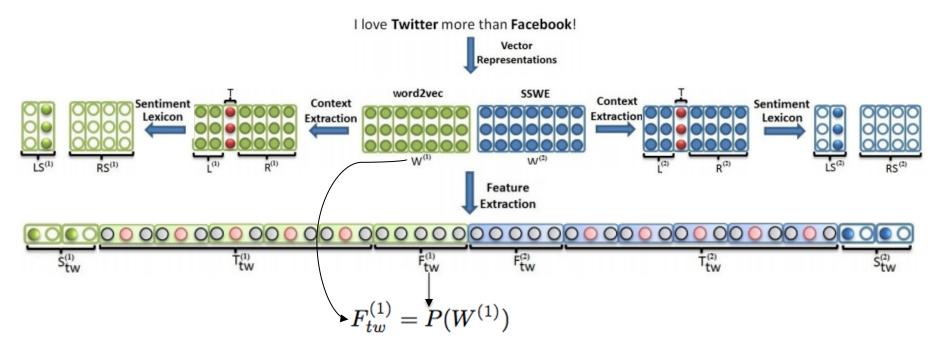
Extract various features


Target-dependent features from words filtered by sentiment lexicon

School of Information Systems

Linear Classifier

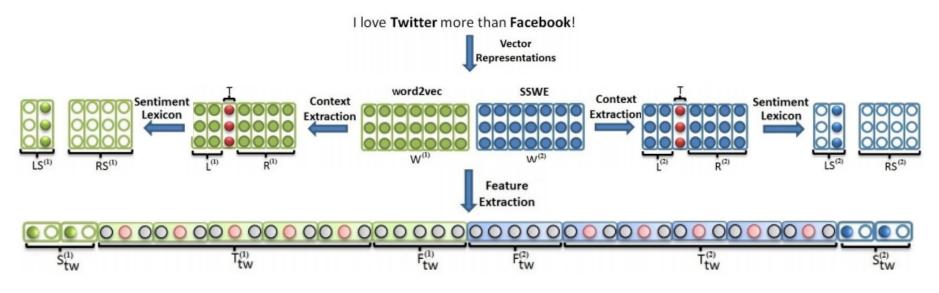
Extract various features


Target-dependent features from the left context, right context, and target, respectively

School of Information Systems

Linear Classifier

Extract various features


Full tweet features

School of Information Systems

Linear Classifier

Extract various features

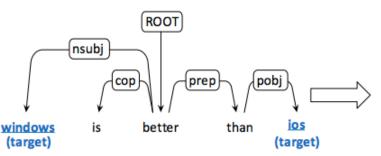
Feed the concatenated features to a discriminative classifier

• SVM

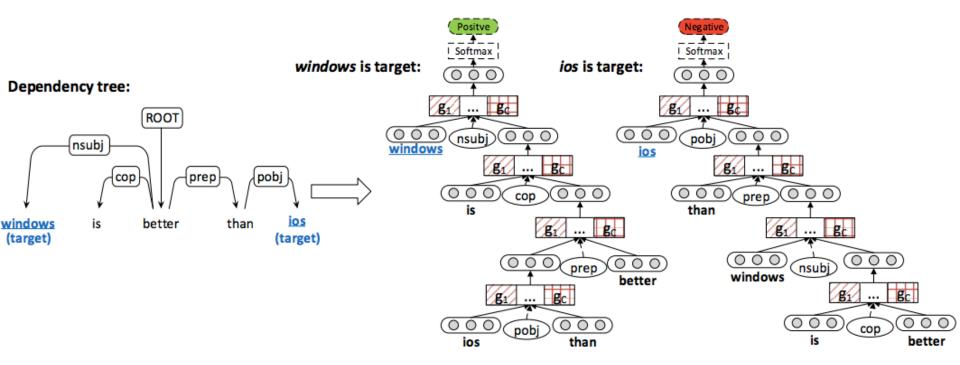
School of Information Systems

Outline

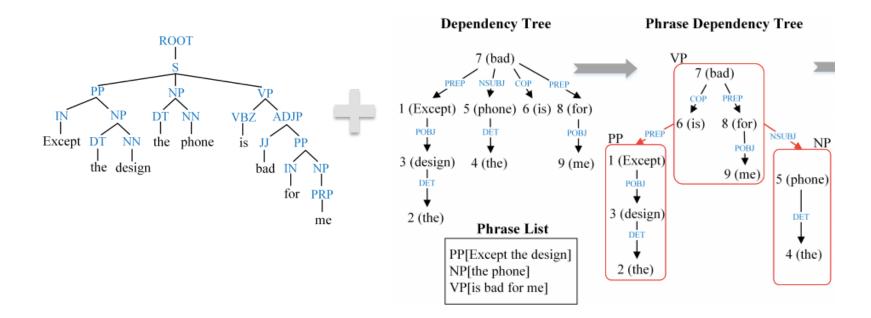
Background


- Linear Classifier
- Recursive Neural Network
- Memory Network
- CNN-based Methods
- RNN-based Methods
- BERT-based Methods

- Dependency Tree-based Approach
 - AdaRNN
 - propagate sentiment information to the target node in a bottom-up manner

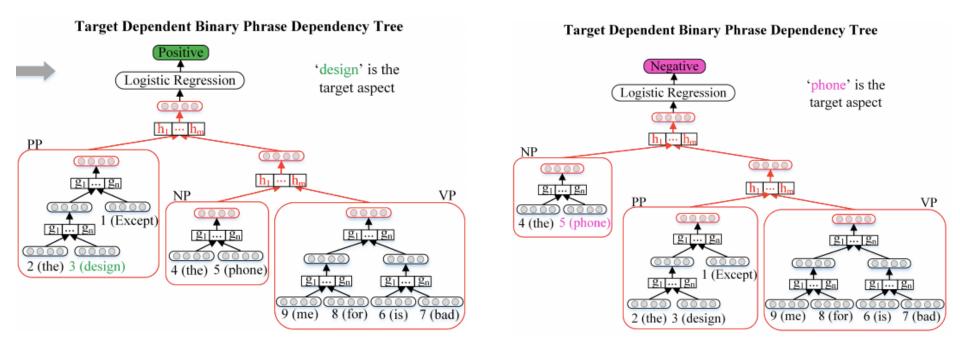

Dependency tree:

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming Zhou, and Ke Xu. 2014. Adaptive Recursive Neural Network for Target-dependent Twitter Sentiment Classification. In Proceedings of ACL, 49-54.


- Dependency Tree-based Approach
 - AdaRNN
 - propagate sentiment information to the target node in a bottom-up manner

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming Zhou, and Ke Xu. 2014. Adaptive Recursive Neural Network for Target-dependent Twitter Sentiment Classification. In Proceedings of ACL, 49-54.

- Dependency + Constituent tree-based Approach
 - PhraseRNN



Thien Hai Nguyen, and Kiyoaki Shirai. 2015. PhraseRNN: Phrase Recursive Neural Network for Aspect-based Sentiment Analysis. In Proceedings of EMNLP, 2509-2514.

Dependency + Constituent tree-based Approach

PhraseRNN

School of Information Systems

Thien Hai Nguyen, and Kiyoaki Shirai. 2015. PhraseRNN: Phrase Recursive Neural Network for Aspect-based Sentiment Analysis. In Proceedings of EMNLP, 2509-2514.

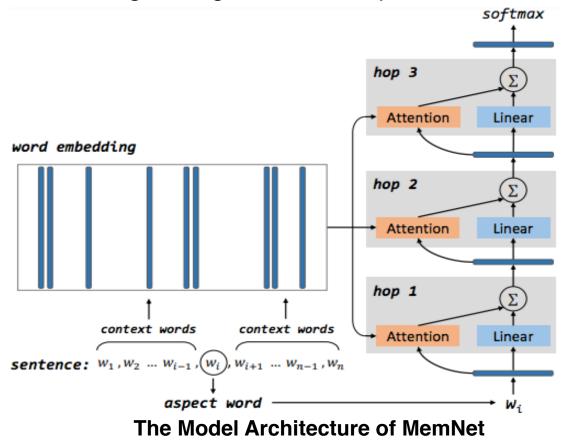
Outline

Background

Methodology

- Linear Classifier
- Recursive Neural Network

– Memory Network


- CNN-based Methods
- RNN-based Methods
- BERT-based Methods

Summary

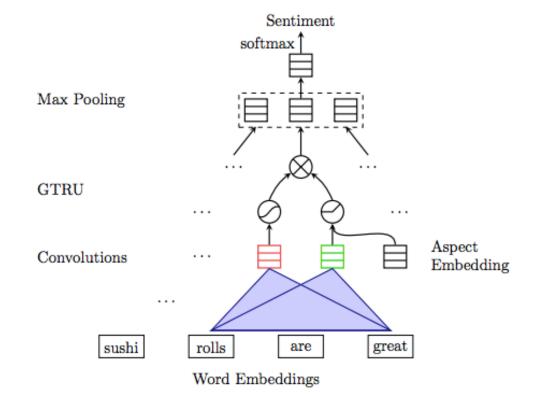
Memory Network

- MemNet
 - Word embedding of target words as queries to MemNet

School of Information Systems Duyu Tang, Bing Qin, Ting Liu, et al. Aspect level sentiment classification with deep memory network. In EMNLP , 2016.

Outline

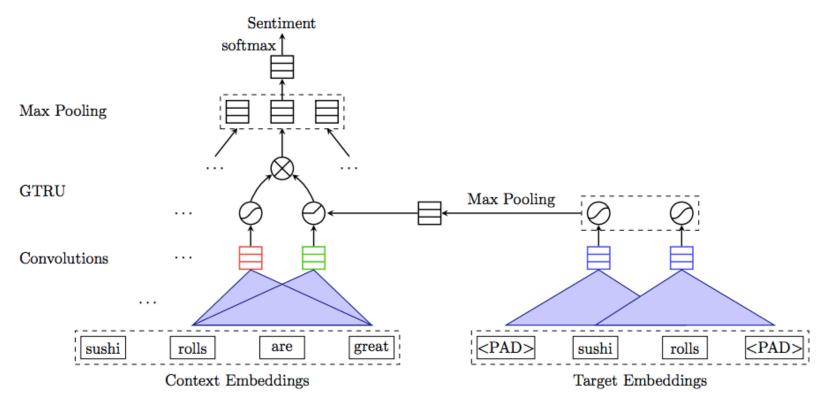
Background


Methodology

- Linear Classifier
- Recursive Neural Network
- Memory Network
- CNN-based Methods
- RNN-based Methods
- BERT-based Methods

Summary

- GCN (Gated Convolutional Networks)
 - Incorporate gate mechanism to be sensitive to be opinion targets



Model I. GCN for Aspect Category-based Sentiment Classification

School of Information Systems Xue, Wei, and Tao Li. "Aspect Based Sentiment Analysis with Gated Convolutional Networks." In Proceedings of ACL 2018.

- GCN (Gated Convolutional Networks)
 - Incorporate gating mechanism to be sensitive to be opinion targets

Model II. GCN for Aspect-Level Sentiment Classification

Xue, Wei, and Tao Li. "Aspect Based Sentiment Analysis with Gated Convolutional Networks." In Proceedings of ACL 2018.

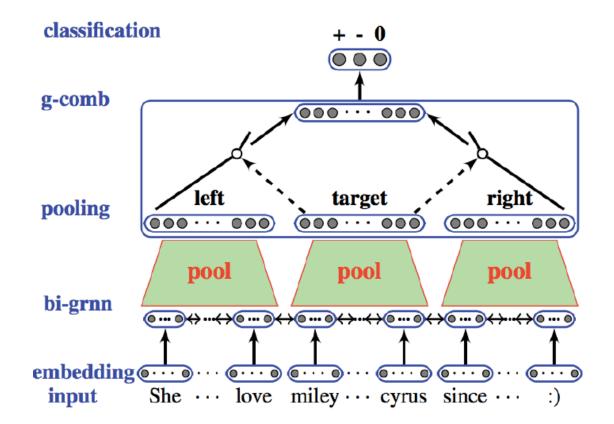
Outline

Background

Methodology

- Linear Classifier
- Recursive Neural Network
- Memory Network
- CNN-based Methods

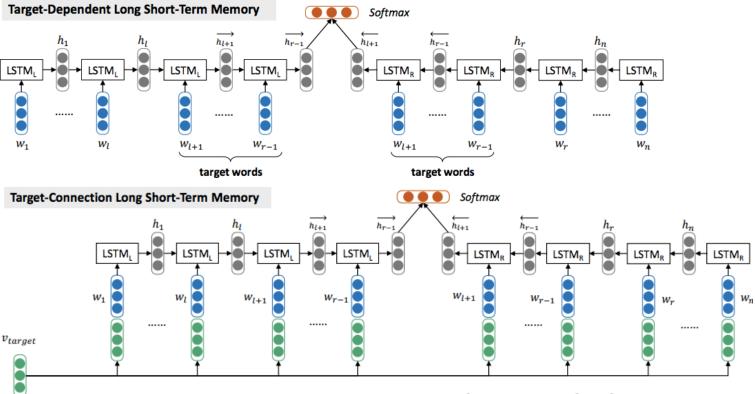
– RNN-based Methods


- BERT-based Methods

Summary

GRU

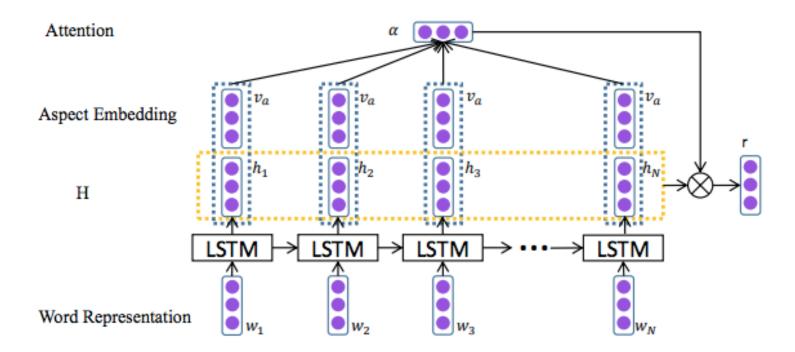
Gating Mechanism



Meishan Zhang, Yue Zhang, and Duy-Tin Vo. Gated Neural Networks for Targeted Sentiment Analysis. In Proceedings of AAAI 2016.

LSTM

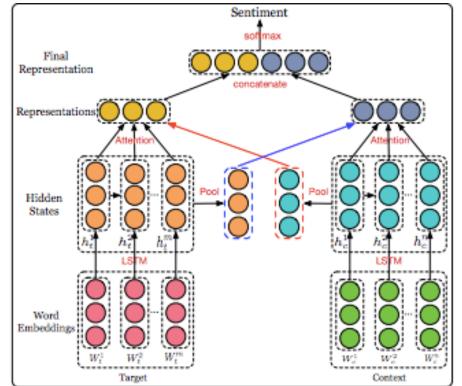
Sentence Encoding


The Model Architecture of TD-LSTM and TC-LSTM

School of Information Systems Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Liu. Effective LSTMs for target-dependent sentiment classification. In COLING, 2016.

LSTM

The Model Architecture of AE-LSTM

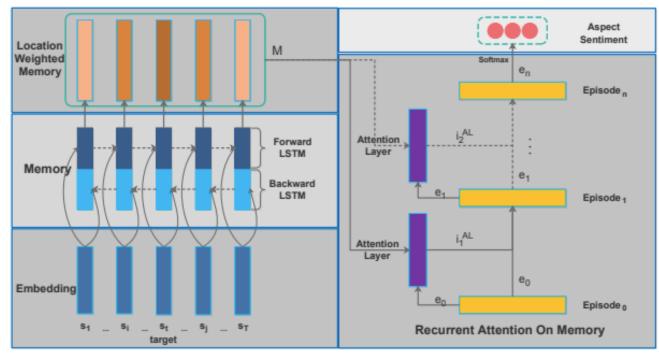


Yequan Wang, Minlie Huang, Li Zhao, et al. Attention-based LSTM for aspect-level sentiment classification. In EMNLP, 2016.

LSTM

- IAN
 - Interactive Attention Mechanism

The Model Architecture of IAN

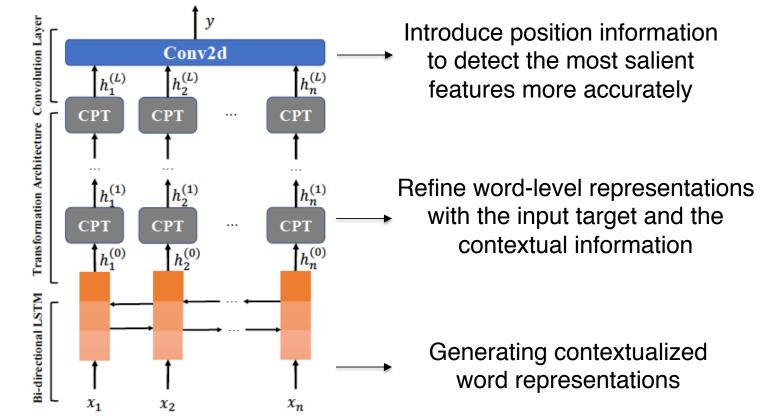

School of Information Systems Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng Wang. Interactive attention networks for aspect-level sentiment classification. In IJCAI, 2017.

Methodology

LSTM

- RAM
 - Position-based Weighting Strategy
 - Multi-Hop Attention Mechanism

The Model Architecture of RAM


School of Information Systems Peng Chen, Zhongqian Sun, Lidong Bing, and Wei Yang. Recurrent attention network on memory for aspect sentiment analysis. In EMNLP, 2017.

Methodology

LSTM

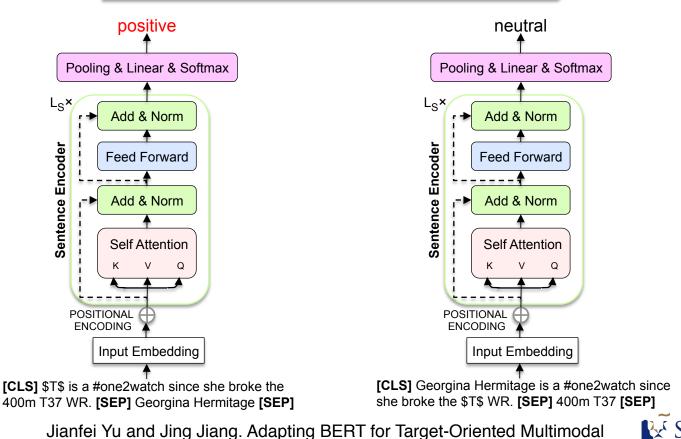
– TNet

The Model Architecture of TNet

Xin Li, Lidong Bing, Wai Lam, and Bei Shi. Transformation networks for target-oriented sentiment classification. In ACL, 2018.

Outline

Background


- Linear Classifier
- Recursive Neural Network
- Memory Network
- CNN-based Methods
- RNN-based Methods
- BERT-based Methods

BERT-based Methods

Feed the transformed sentence to BERT

[Georgina Hermitage] is a #one2watch since she broke the [400m T37] WR!

Methodology

Jianfei Yu and Jing Jiang. Adapting BERT for Target-Oriented Multimoda Sentiment Classification. In IJCAI, 2019.

Methodology

Summary

School of Information Systems

Summary

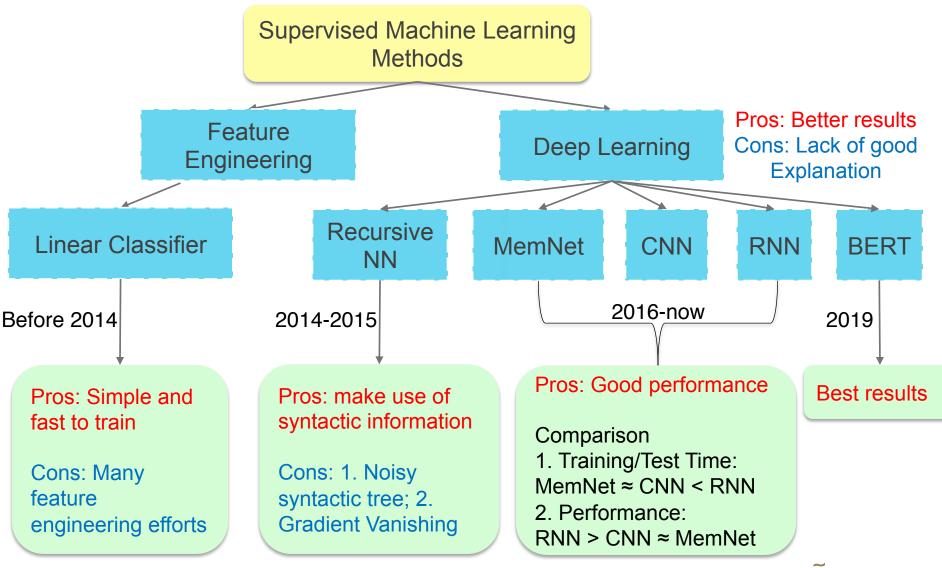
Three Benchmark Datasets

Data Set	#Tra	ining	Samples	#Test	Samp	oles
Dala Sel	POS	NEG	NEU	POS	NEG	NEU
Laptop	980	858	454	340	128	171
Restaurant	2159	800	623	730	195	196
Twitter-2014	1567	1563	3127	147	147	346

- Laptop, Restaurant are from SemEval-2014
- Twitter-2014 from (Dong et al. ACL 2014)
- Another two Restaurant datasets from SemEval-2015, SemEval-2016

Jianfei Yu and Jing Jiang. Adapting BERT for Target-Oriented Multimodal Sentiment Classification. In IJCAI, 2019.

Summary


Experimental Results on Three Benchmark Datasets

Method	Lap	otop	Resta	urant	Twitte	r-2014
Method	Accuracy	Macro-F1	Accuracy	Macro-F1	Accuracy	Macro-F1
SVM	70.49	-	80.16	-	63.40	63.30
AE-LSTM	68.90	-	76.60	-	-	-
IAN	72.10	-	78.60	-	-	-
TD-LSTM	71.83	68.43	78.00	66.73	66.62	64.01
MemNet	70.33	64.09	78.16	65.83	68.50	66.91
RAM	75.01	70.51	79.79	68.86	71.88	70.33
TNet-LF	76.01	71.47	80.79	70.84	74.68	73.36
TNet-AS	76.54	71.75	80.69	71.27	74.97	73.60
MGAN	75.39	72.47	81.25	71.94	72.54	70.81
BERT	76.96	73.67	84.29	77.22	75.14	74.15

Jianfei Yu and Jing Jiang. Adapting BERT for Target-Oriented Multimodal Sentiment Classification. In IJCAI, 2019.

Summary

INGAPORE MANAGEMENT

School of Information Systems

Part V

Cutting-Edge Dimensions of Fine-Grained Opinion Mining

Transfer Learning

Multi-Task Learning

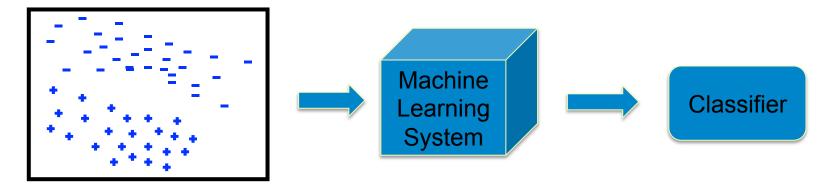
Multimodal Learning

Summary

Outline

Transfer Learning

- Cross-Domain
- Cross-Lingual
- Short Summary
- Multi-Task Learning
- Multimodal Learning
- Summary



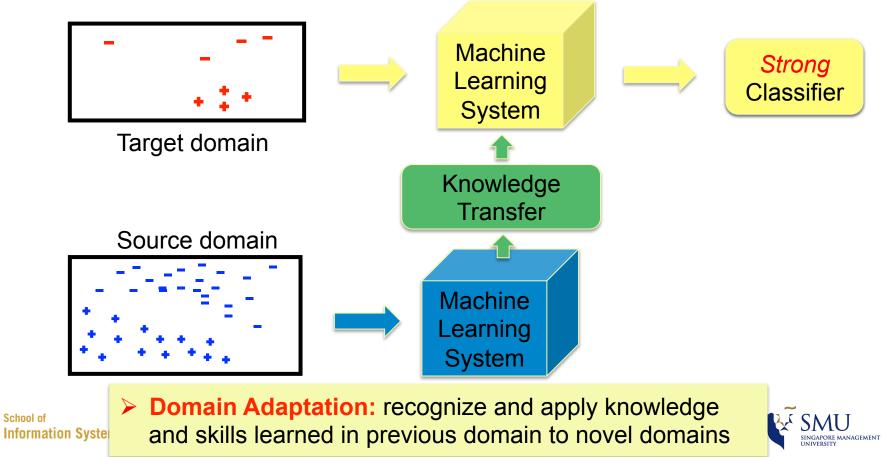
Transfer Learning

Cross-Domain

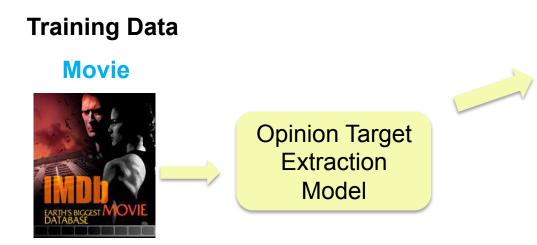
Background

- Popular Methods for Fine-Grained Opinion Mining
 - Supervised Machine Learning (NN)

Large amount of training data


Transfer Learning

Cross-Domain


Background

Real Scenario

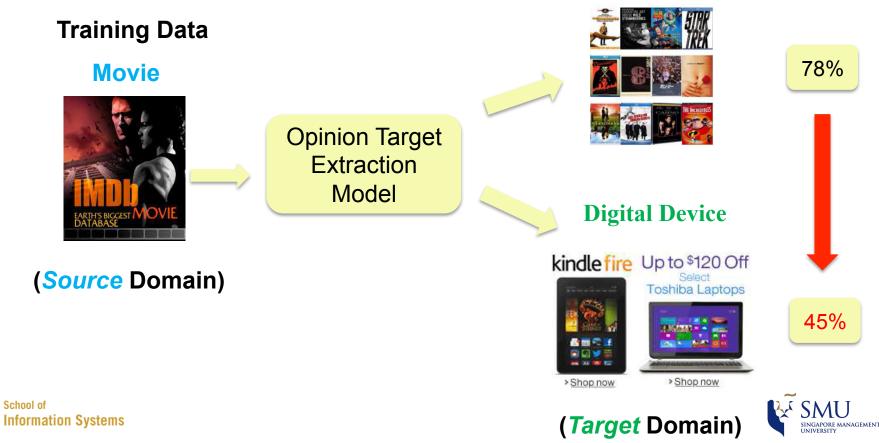
• Limited or no Labeled Data for many domains

- Background
 - Challenge of Domain Adaptation

Test Data

Movie

78%


Transfer

Learning

School of Information Systems

- Background
 - Challenge of Domain Adaptation

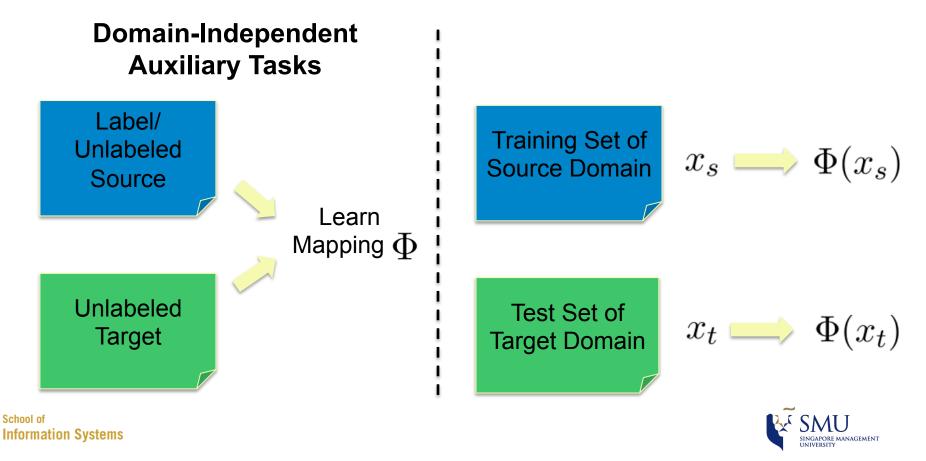
Test Data

Movie

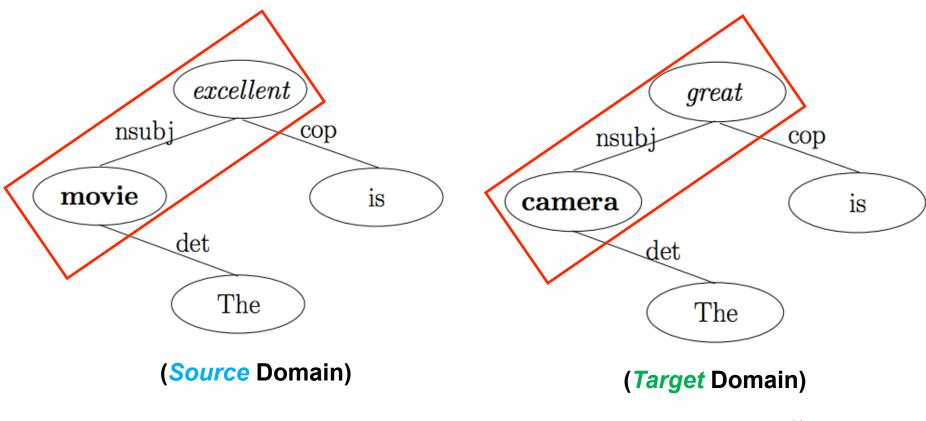
- Background
 - Reasons behind performance drop

Movie (source domain)	Digital Device (target domain)
The [movie] is great.	The [camera] is excellent.
I really like his [characters].	I highly recommend this [laptop].
The [plot] is quite dull.	The [Mac OS] is quite fast.

 Opinion targets in the source domain movie, characters, plot
 Opinion targets in the target domain camera, laptop, Mac OS



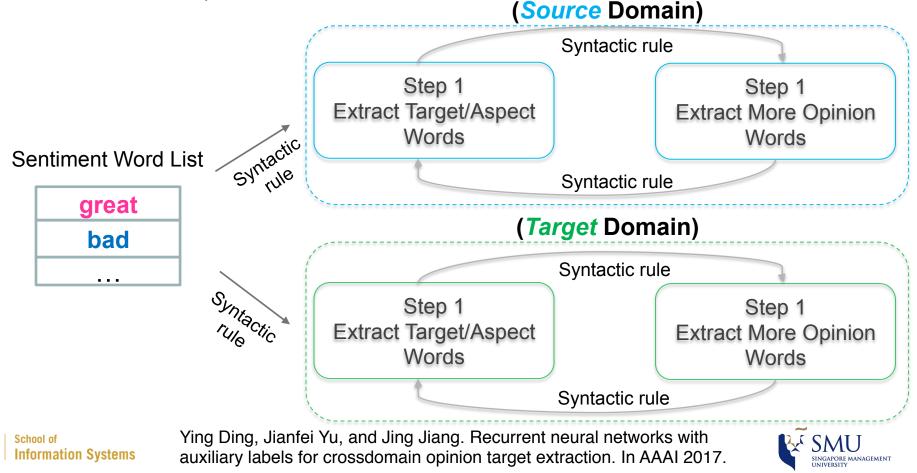
Transfer Learning

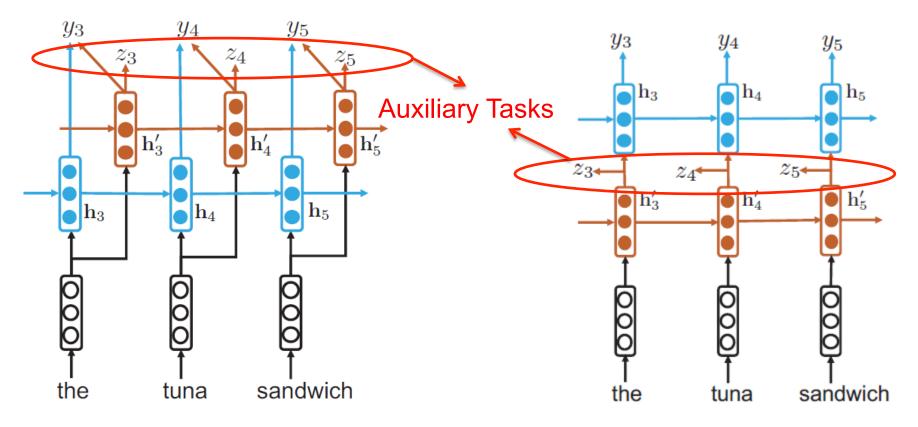

Cross-Domain

Background

- General Solution
 - Learn a shared representation across domains

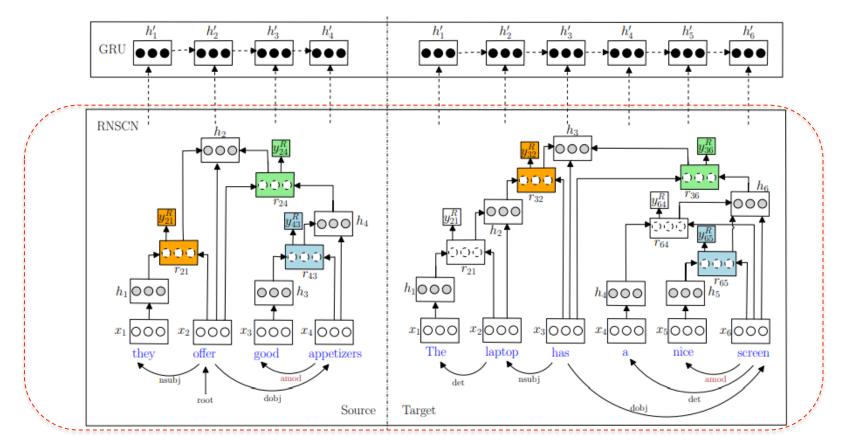
- Cross-Domain Opinion Target Extraction
 - Domain-Independent Auxiliary Task
 - Syntactic structures are shared across domains.


Ying Ding, Jianfei Yu, and Jing Jiang. Recurrent neural networks with auxiliary labels for crossdomain opinion target extraction. In AAAI 2017.


Transfer

Learning

- Cross-Domain Opinion Target Extraction
 - The same task as our Auxiliary Tasks
 - Unsupervised Extraction Method


RNN with Auxiliary Tasks (AuxRNN)

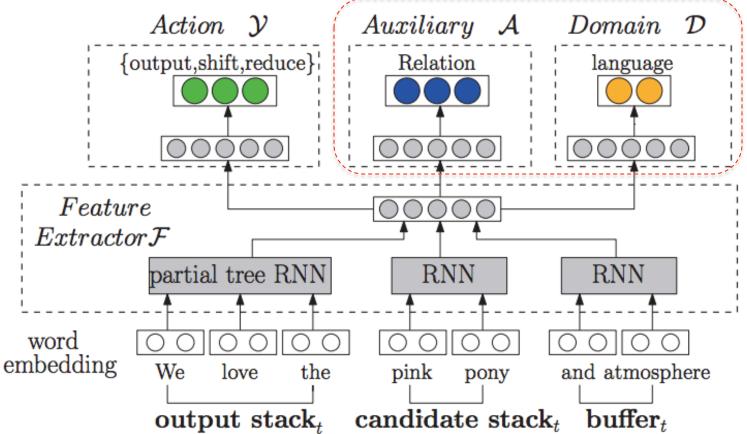
School of Information Systems Ying Ding, Jianfei Yu, and Jing Jiang. Recurrent neural networks with auxiliary labels for crossdomain opinion target extraction. In AAAI 2017.

- Cross-Domain Aspect and Opinion Terms Co-Extraction
 - Recursive Neural Structural Correspondence Network (RNSCN)

School of Information Systems

Wenya Wang and Sinno Jialin Pan. Recursive Neural Structural Correspondence Network for Cross-domain Aspect and Opinion Co-Extraction. In Proc. ACL, 2018.

Outline


Transfer Learning

- Cross-Domain
- Cross-Lingual
- Short Summary
- Multi-Task Learning
- Multimodal Learning
- Summary

Cross-Lingual

- Cross-Lingual Aspect Term Extraction
 - Transition-based Adversarial Network (TAN)

Wenya Wang and Sinno Jialin Pan. Transition-based Adversarial Network for Crosslingual Aspect Extraction. In Proc. IJCAI, 2018.

Outline

Transfer Learning

- Cross-Domain
- Cross-Lingual
- Short Summary
- Multi-Task Learning
- Multimodal Learning
- Summary

- Key to Cross-Domain/Lingual
 - Step 1: Identify shared knowledge across domains or languages
 - General Sentiment Words like *good*, *bad*, etc
 - Syntactic Structure
 - Domain/Language Discriminator
 - Auto-encoder (reconstruction of the input)
 - Step 2: Design auxiliary tasks based on these shared knowledge

 Benchmark Datasets for Cross-Domain Aspect and Opinion Terms Co-Extraction

Data Set	#Sentences	Train	Test
Laptop	3,845	2,884	961
Restaurant	5,841	4,381	1,460
Digital Device	3,836	2,877	959

- Laptop from SemEval-2014
- Restaurant from SemEval-2014, 2015
- Digital Device from (Hu and Liu, KDD2004)

Results on Benchmark Datasets

- Hier-Joint: (Ding, Yu and Jiang, AAAI 2017)
- RNSCN: (Wang and Sinno, ACL 2018)

Models	R-	→L	R-	→D	L-	→R	L-	→D	D-	→R	D-	→L
widdels	AS	OP	AS	OP	AS	OP	AS	OP	AS	OP	AS	OP
CrossCRF	19.72	59.20	21.07	52.05	28.19	65.52	29.96	56.17	6.59	39.38	24.22	46.67
CIOSSCRF	(1.82)	(1.34)	(0.44)	(1.67)	(0.58)	(0.89)	(1.69)	(1.49)	(0.49)	(3.06)	(2.54)	(2.43)
DAD	25.92	62.72	22.63	54.44	46.90	67.98	34.54	54.25	45.44	60.67	28.22	59.79
RAP	(2.75)	(0.49)	(0.52)	(2.20)	(1.64)	(1.05)	(0.64)	(1.65)	(1.61)	(2.15)	(2.42)	(4.18)
Ilian Isint	33.66	-	33.20	-	48.10	-	31.25	-	47.97	-	34.74	-
Hier-Joint	(1.47)	-	(0.52)	-	(1.45)	-	(0.49)	-	(0.46)	-	(2.27)	
RNCRF	- 24.26	60.86	24:31	51:28	40.88	66.50	31.52	55.85	- 34.59	63.89	40.59	60.17
KNCKF	(3.97)	(3.35)	(2.57)	(1.78)	(2.09)	(1.48)	(1.40)	(1.09)	(1.34)	(1.59)	(0.80)	(1.20)
RNGRU	24.23	60.65	20.49	52.28	39.78	62.99	32.51	52.24	38.15	64.21	39.44	60.85
KINGKU	(2.41)	(1.04)	(2.68)	(2.69)	(0.61)	(0.95)	(1.12)	(2.37)	(2.82)	(1.11)	(2.79)	(1.25)
RNSCN-CRF	35.26	61.67	32.00	52.81	53.38	67.60	34.63	56.22	48.13	65.06	46.71	61.88
KINSCH-CKF	(1.31)	(1.35)	(1.48)	(1.29)	(1.49)	(0.99)	(1.38)	(1.10)	(0.71)	(0.66)	(1.16)	(1.52)
RNSCN-GRU	37.77	62.35	33.02	57.54	53.18	71.44	35.65	60.02	49.62	69.42	45.92	63.85
KINSCIN-GRU	(0.45)	(1.85)	(0.58)	(1.27)	(0.75)	(0.97)	(0.77)	(0.80)	(0.34)	(2.27)	(1.14)	(1.97)
RNSCN ⁺ -GRU	40.43	65.85	35.10	60.17	52.91	72.51	40.42	61.15	48.36	73.75	51.14	71.18
KINSUN - GRU	(0.96)	(1.50)	(0.62)	(0.75)	(1.82)	(1.03)	(0.70)	(0.60)	(1.14)	(1.76)	(1.68)	(1.58)

Incorporating domain-independent auxiliary tasks can indeed significantly outperform the baseline approach.

 Benchmark Datasets for Cross-Lingual Aspect Term Extraction

Data Set	#Sentences	Train	Test
English	2,676	2,000	676
French	2,429	1,733	696
Spanish	2,951	2,070	881

All from SemEval-2016 Task 5

Results on Benchmark Datasets

- CL-DSCL: (Ding, Yu and Jiang, AAAI 2017)
- TAN: (Wang and Sinno, IJCAI 2018)

Models	En-	→Fr	En-	→Es	Fr–	→En	Fr–	→Es	Es-	→En	Es-	→Fr
widdeis	Train	Test										
Translate-TAN	45.09	40.74	45.85	41.08	39.28	38.74	32.27	34.54	45.94	41.28	41.52	36.38
Translate-CRF	25.23	23.15	28.26	30.10	25.89	26.79	31.55	30.63	32.24	26.66	24.05	20.90
NoAdp	27.71	26.13	27.56	31.31	41.21	38.29	45.43	48.21	37.52	30.39	37.95	37.89
A-RNN	22.92	20.54	31.11	34.04	29.62	27.11	40.58	40.77	35.49	30.26	34.52	31.02
A-R ² NN	27.92	23.41	28.63	28.65	36.43	33.25	38.55	39.45	40.83	34.16	42.83	37.19
CrossCRF	20.41	16.83	16.17	18.22	21.63	19.02	6.90	6.81	10.13	8.28	12.01	10.24
CL-DSCL	33.67	31.48	44.56	45.01	51.75	47.27	53.23	55.89	50.22	45.90	38.66	34.17
TAN	53.27	50.02	49.38	50.52	55.38	50.30	55.32	57.65	51.99	44.14	51.16	48.78

Incorporating language-independent auxiliary tasks can indeed significantly outperform the baseline approach.

Outline

Transfer Learning

Multi-Task Learning

Aspect and Opinion Terms Co-Extraction

- End to End ABSA

- Aspect Term Extraction + Aspect-Level Sentiment Classification
- Multimodal Learning

Summary

- Aspect and Opinion Terms Co-extraction
 - Input
 - A sentence or document
 - Output
 - Aspect Term
 - Opinion Term
 - Example

The **fish** was rather **over cooked**, but the **staff** was **quite nice**!

Aspect Term: fish, staff

- Opinion Term: over cooked, nice
- Sequence Labeling Problems

School of Information Systems

Outline

Transfer Learning

Multi-Task Learning

Aspect and Opinion Terms Co-Extraction

– End to End ABSA

- Aspect Term Extraction + Aspect-Level Sentiment Classification
- Multimodal Learning

Summary

Multi-Task Learning

- End to End Aspect-Based Sentiment Analysis
 - Input
 - A sentence or document
 - Output
 - Aspect Term
 - Sentiment polarity towards the aspect term
 - Positive, Negative, Neutral

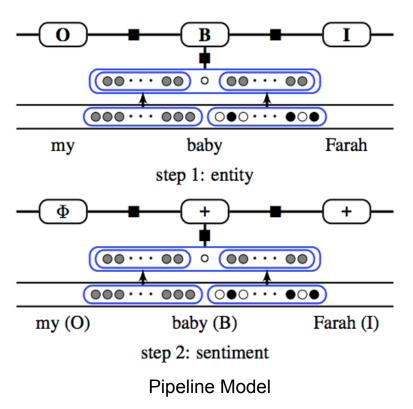
Example

The **fish** was rather **over cooked**, but the **staff** was **quite nice**!

(fish, negative), (staff, positive)

School of Information Systems

Meishan Zhang, Yue Zhang, and Duy-Tin Vo. 2015. Neural networks for open domain targeted sentiment. In Proceedings of EMNLP 2015.

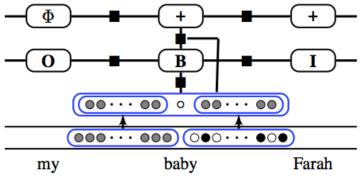

SINGAPORE MANAGEMENT

Background

- End to End Aspect-Based Sentiment Analysis
 Neural CRF
 - Method 1: pipeline

sentence:	So	excited	to	meet	my	baby	Farah	!!!
entity:	0	0	0	0	0	В	Ι	0
sentiment:	Φ	Φ	Φ	Φ	Φ	+	+	Φ

Two Sequence Labeling Tasks

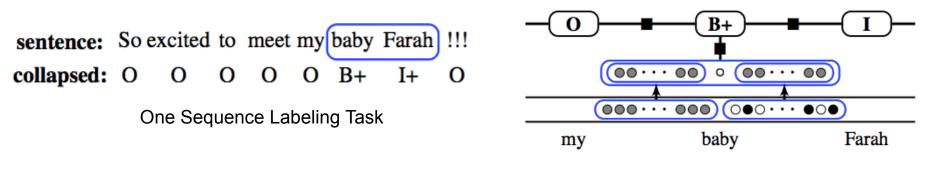


Multi-Task Learning

- End to End Aspect-Based Sentiment Analysis
 Neural CRF
 - Method 2: joint

sentence:	So	excited	to	meet	my	baby	Farah	!!!
entity:	0	0	0	0	0	В	Ι	0
sentiment:	Φ	Φ	Φ	Φ	Φ	+	+	Φ

Two Sequence Labeling Tasks


Joint Model

Meishan Zhang, Yue Zhang, and Duy-Tin Vo. 2015. Neural networks for open domain targeted sentiment. In Proceedings of EMNLP 2015.

Multi-Task Learning

- End to End Aspect-Based Sentiment Analysis
 Neural CRF
 - Method 3: collapsed

Collapsed Model

Meishan Zhang, Yue Zhang, and Duy-Tin Vo. 2015. Neural networks for open domain targeted sentiment. In Proceedings of EMNLP 2015.

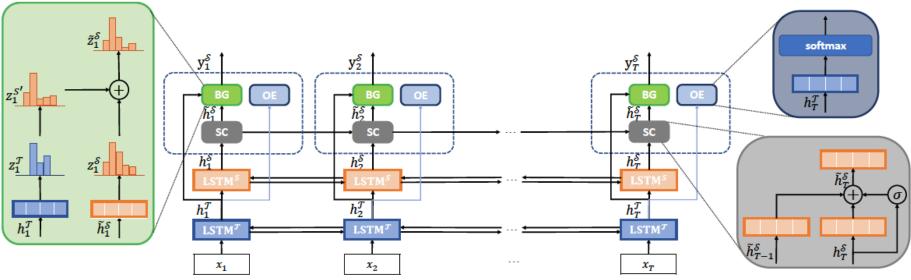
End to End Aspect-Based Sentiment Analysis – Neural CRF

Comparison

			Eng	lish					Spa	nish		
Model		Entity			SA			Entity			SA	
	Р	R	F	Р	R	F	Р	R	F	Р	R	F
Pipeline												
discrete	59.37	34.83	43.84	42.97	25.21	31.73	70.77	47.75	57.00	46.55	31.38	37.47
neural	53.64	44.87	48.67	37.53	31.38	34.04	65.59	47.82	55.27	41.50	30.27	34.98
integrated	60.69	51.63	55.6 7	43.71	37.12	40.06	70.23	62.00	65.76	45.99	40.57	43.04
Joint												
discrete	59.55	34.06	43.30	43.09	24.67	31.35	71.08	47.56	56.96	46.36	31.02	37.15
neural	54.45	42.12	47.17	37.55	28.95	32.45	65.05	47.79	55.07	40.28	29.58	34.09
integrated	61.47	49.28	54.59	44.62	35.84	39.67	71.32	61.11	65.74	46.67	39.99	43.02
Collapsed												
discrete	64.16	26.03	36.95	48.35	19.64	27.86	73.18	35.11	47.42	49.85	23.91	32.30
neural	58.53	37.25	45.30	43.12	27.44	33.36	67.43	43.2	52.64	42.61	27.27	33.25
integrated	63.55	44.98	52.58	46.32	32.84	38.36	73.51	53.3	61.71	47.69	34.53	40.00

School of Information Systems Meishan Zhang, Yue Zhang, and Duy-Tin Vo. 2015. Neural networks for open domain targeted sentiment. In Proceedings of EMNLP 2015.

End to End Aspect-Based Sentiment Analysis
 Unified Solution


Input	The	AMD	Turin	Processor	seems	to	always	perform	much	better	than	Intel	
Joint	0	В	I	Е	0	0	0	0	0	0	0	S	0
Joint	0	POS	POS	POS	0	0	0	0	0	0	0	NEG	0
Unified (🗸)	0	B-POS	I-POS	E-POS	0	0	0	0	0	0	0	S-NEG	0

Two Sequence Labeling Tasks

End to End Aspect-Based Sentiment Analysis

- Two LSTMs for the target boundary detection task (auxiliary) and the complete TBSA task (primary).
- BG component: exploiting boundary information
- SC component: maintaining sentiment consistency
- OE component: improving the quality of the boundary information

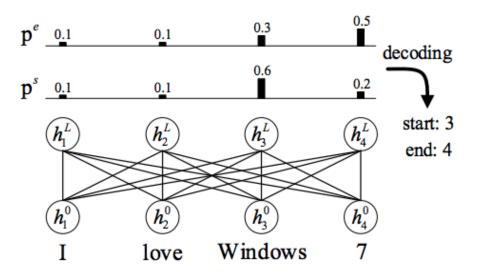
School of Information Systems Xin Li, Lidong Bing, Piji Li and Wai Lam. A Unified Model for Opinion Target Extraction 🔛 SMU and Target Sentiment Prediction. In AAAI 2019.

SINGAPORE MANAGEMEN UNIVERSITY

End to End Aspect-Based Sentiment Analysis

Span Extraction-based approach

Sentence:	Ι	love	Windows	7		over	Vista	
Pipeline/	0	0	В	I		0	В	0
Joint:	0	0	+	+		0	-	0
Collapsed:	0	0	B+	I+		0	B-	0
Sentence:	Ι	love	Window	s 7		. over	vista	ι.
Pipeline/ Joint:]	Farget	start: 3, 1 Pola			·	end: 4,	11
Collapsed:	Та	arget s	tart: 3+, 1	1-	Tar	get er	nd: 4+,	11-


School of Information Systems

Open-Domain Targeted Sentiment Analysis via Span-Based Extraction and Classification. Minghao Hu, Yuxing Peng, Zhen Huang, Dongsheng Li, Yiwei Lv. In Proceedings of ACL. 2019.

Multi-Task Learning

- End to End Aspect-Based Sentiment Analysis
 - Span Extraction-based approach
 - BERT as encoder

Extractor \rightarrow start: 3 end: 4 h_1^L h_2^L h_3^L h_4^L h_1^0 h_2^0 h_3^0 h_4^0 I love Windows 7

- The last block's hidden states are used to propose one or multiple candidate targets based on the probabilities of the start and end positions
- Predict the sentiment polarity using the span representation of the given target

School of Open-Domain Targeted Sentiment Analysis via Span-Based Extraction and Information Systems Classification. Minghao Hu, Yuxing Peng, Zhen Huang, Dongsheng Li, Yiwei Lv. In Proceedings of ACL. 2019.

Background

- End to End Aspect-Based Sentiment Analysis
 - Comparison of previous three approaches
 - Benchmark Datasets

Data Set	#Tra	ining	Samples	#Test Samples				
Dala Sel	POS	NEG NEU		POS	NEG	NEU		
Laptop	980	858	454	340	128	171		
Restaurant	2159	800	623	730	195	196		
Twitter-2014	1567	1563	3127	147	147	346		

- Laptop, Restaurant are from SemEval-2014
- Twitter-2014 from (Dong et al. ACL 2014)
- Another two Restaurant datasets from SemEval-2015, SemEval-2016

Background

- End to End Aspect-Based Sentiment Analysis
 - Comparison of previous three approaches

Unified Approach vs LSTM-based Methods

	Model		\mathbb{D}_{L}		\mathbb{D}_{R}			\mathbb{D}_{T}		
	Woder	Р	R	F1	Р	R	F1	Р	R	F1
	CRF-joint	57.38	35.76	44.06	60.00	48.57	53.68	43.09	24.67	31.35
Existing Baselines	CRF-unified	59.27	41.86	49.06	63.39	57.74	60.43	48.35	19.64	27.86
Existing Dasennes	NN-CRF-joint	55.64	34.48	45.49	61.56	50.00	55.18	44.62	35.84	39.67
	NN-CRF-unified	58.72	45.96	51.56	62.61	60.53	61.56	46.32	32.84	38.36
	CRF-pipeline	59.69	47.54	52.93	52.28	51.01	51.64	42.97	25.21	31.73
Pipeline Baselines	NN-CRF-pipeline	57.72	49.32	53.19	60.09	61.93	61.00	43.71	37.12	40.06
1000	HAST-TNet	56.42	54.20	55.29	62.18	73.49	67.36	46.30	49.13	47.66
	LSTM-unified	57.91	46.21	51.40	62.80	63.49	63.14	51.45	37.62	43.41
Unified Baselines	LSTM-CRF-1	58.61	50.47	54.24	66.10	66.30	66.20	51.67	44.08	47.52
Unined Dasennes	LSTM-CRF-2	58.66	51.26	54.71	61.56	67.26	64.29	53.74	42.21	47.26
	LM-LSTM-CRF	53.31	59.4	56.19	68.46	64.43	66.38	43.52	52.01	47.35
	Base model	60.00	46.85	52.61	61.48	66.16	63.73	53.02	41.47	46.50
OURS	Base model + BG	58.58	50.63	54.31	67.51	66.42	66.96	52.26	43.84	47.66
	Base model + BG + SC	58.95	53.00	55.81	63.95	69.65	66.68	53.12	43.60	47.79
	Base model + BG + OE	63.43	49.53	55.62	62.85	66.77	65.22	53.10	43.50	47.78
	Full model	61.27	54.89	57.90 ^{b,#}	68.64	71.01	69.80 ^{‡,‡}	53.08	43.56	48.01 [‡]

School of Information Systems Open-Domain Targeted Sentiment Analysis via Span-Based Extraction and Classification. Minghao Hu, Yuxing Peng, Zhen Huang, Dongsheng Li, Yiwei Lv. In Proceedings of ACL. 2019.

Background

- End to End Aspect-Based Sentiment Analysis
 - Comparison of previous three approaches
 - BERT-based Methods vs Unified Approach

M - 1-1	LAPTOP				REST		1	TWITTER			
Model	Prec.	Rec.	F1	Prec.	Rec.	F1	Prec.	Rec.	F1		
UNIFIED	61.27	54.89	57.90	68.64	71.01	69.80	53.08	43.56	48.01		
TAG-pipeline	65.84	67.19	66.51	71.66	76.45	73.98	54.24	54.37	54.26		
TAG-joint	65.43	66.56	65.99	71.47	75.62	73.49	54.18	54.29	54.20		
TAG-collapsed	63.71	66.83	65.23	71.05	75.84	73.35	54.05	54.25	54.12		
SPAN-pipeline	69.46	66.72	68.06	76.14	73.74	74.92	60.72	55.02	57.69		
SPAN-joint	67.41	61.99	64.59	72.32	72.61	72.47	57.03	52.69	54.55		
SPAN-collapsed	50.08	47.32	48.66	63.63	53.04	57.85	51.89	45.05	48.11		

School of Information Systems Open-Domain Targeted Sentiment Analysis via Span-Based Extraction and Classification. Minghao Hu, Yuxing Peng, Zhen Huang, Dongsheng Li, Yiwei Lv. In Proceedings of ACL. 2019.

Outline

Transfer Learning

Multi-Task Learning

Multimodal Learning

Target-Oriented Multimodal Sentiment
 Classification

Summary

Recall

Multimodal Learning

Target-oriented Sentiment Classification (TSC)

- Input
 - A sentence or document
 - An opinion target
- Output
 - Sentiment polarity towards the opinion target
- Examples

The *fish* was rather *over cooked*, but the *chicken* was *fine*!

sentiment over *fish*: negative
sentiment over *chicken*: positive

Multimodal Learning

Limitation of TSC

- Ineffective for multimodal social media posts
 - Incomplete Textual Contents

- Limitation of TSC
 - Ineffective for multimodal social media posts
 - Incomplete Textual Contents

Jianfei Yu and Jing Jiang. Adapting BERT for Target-Oriented Multimodal Sentiment Classification. In IJCAI 2019.

Multimodal

Learning

- Limitation of TSC
 - Ineffective for multimodal social media posts
 - Incomplete Textual Contents

nasty @nastygyalash · Mar 21, 2016 this is me after the Rihanna concert Imao

School of Information Systems Jianfei Yu and Jing Jiang. Adapting BERT for Target-Oriented Multimodal Sentiment Classification. In IJCAI 2019.

Multimodal Learning

Limitation of TSC

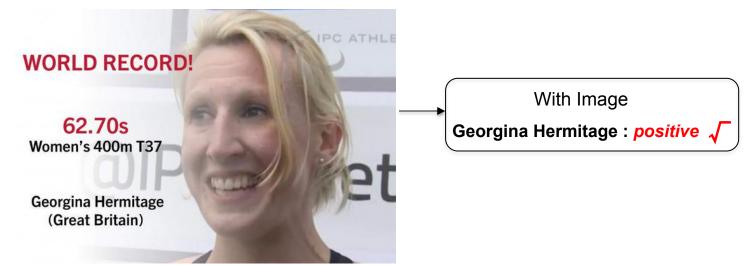
Ineffective for multimodal social media posts

• Incomplete Textual Contents

Irregular Expressions

Para Athletics · 2015年7月24日 PREVIEW @britishathletics Georgina Hermitage is a #one2watch since she broke the 400m T37 WR > bit.ly/1JCic6s

> W/O Image Georgina Hermitage: neutral 🗙


Limitation of TSC

Ineffective for multimodal social media posts

• Incomplete Textual Contents

Irregular Expressions

Para Athletics ② @ParaAthletics · 2015年7月24日 PREVIEW @britishathletics Georgina Hermitage is a #one2watch since she broke the 400m T37 WR > bit.ly/1JCic6s

School of Information Systems

Multimodal Learning

 Target-oriented Multimodal Sentiment Classification (TMSC)

- Input
 - A sentence or document
 - An opinion target
 - An associated image
- Output
 - Sentiment polarity towards the opinion target

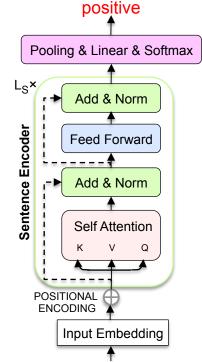
Methodology -- BERT

- Base model with BERT
 - Input Transformation
 - Context as the first sentence
 - Opinion Target as the second sentence
 - Example

[Georgina Hermitage]_{positive} is a #one2watch since she broke the [400m T37]_{neutral} WR!

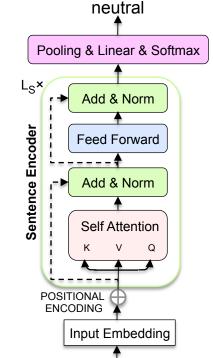
Opinion Target	BERT Input	Label
Georgina Hermitage	[CLS] \$T\$ is a #one2watch since she broke the 400m T37 WR. [SEP] Georgina Hermitage [SEP]	Positive
400m T37	[CLS] Georgina Hermitage is a #one2watch since she broke the \$T\$ WR. [SEP] 400m T37 [SEP]	Neutral

Jianfei Yu and Jing Jiang. Adapting BERT for Target-Oriented Multimodal Sentiment Classification. In IJCAI 2019.


Multimodal

Learning

Methodology -- BERT

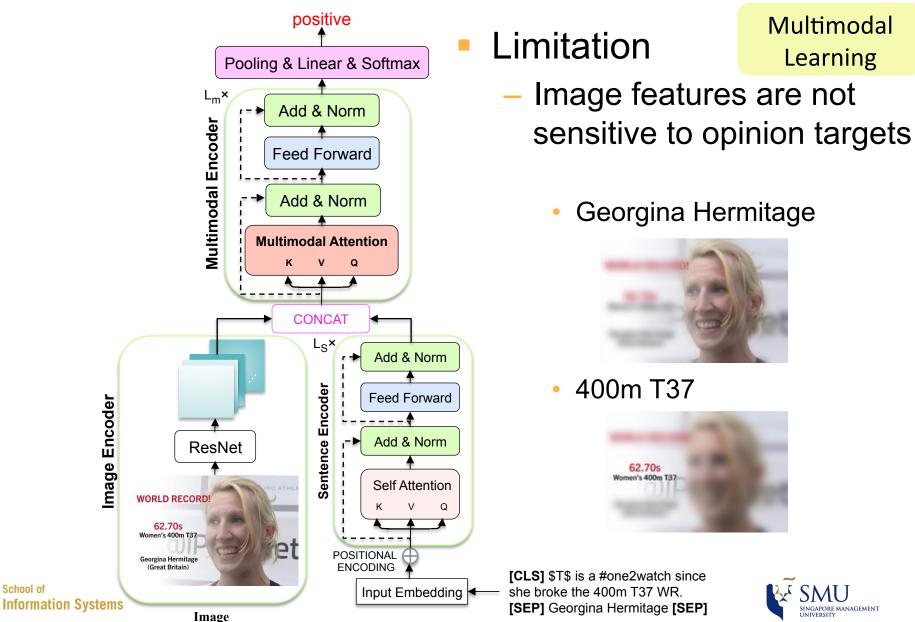

Apply BERT to TSC

Feed the transformed sentence to BERT

[CLS] \$T\$ is a #one2watch since she broke the 400m T37 WR. **[SEP]** Georgina Hermitage **[SEP]**

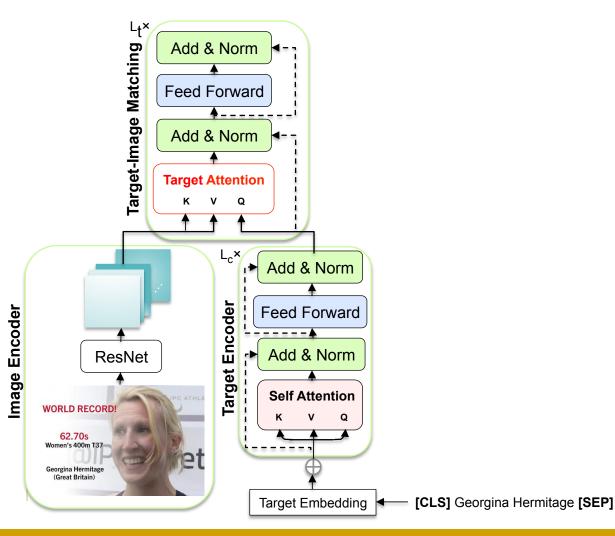
(a). Georgina Hermitage

[CLS] Georgina Hermitage is a #one2watch since she broke the \$T\$ WR. **[SEP]** 400m T37 **[SEP]**


(b). 400m T37

Methodology -- multimodal BERT (mBERT)

School of

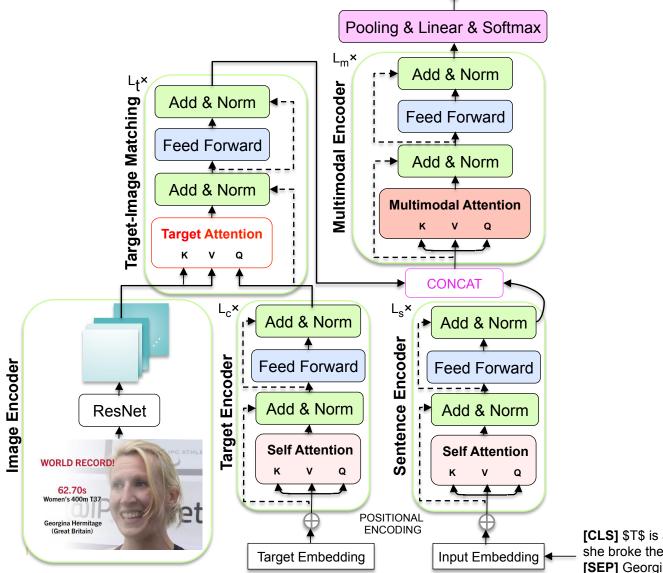


Methodology -- Target-oriented mBERT (TomBERT)

Target Attention

Multimodal Learning

Target as queries, images as keys and values



Methodology -- Target-oriented mBERT (TomBERT)

positive

Full Model

Multimodal Learning

[CLS] \$T\$ is a #one2watch since she broke the 400m T37 WR. [SEP] Georgina Hermitage [SEP]

Experiments

Two Multimodal Datasets

Modality	Data Set	#Training Samples		#Dev Samples			#Test Samples			
		POS	NEG	NEU	POS	NEG	NEU	POS	NEG	NEU
Text+Image	Twitter-2015	928	368	1883	303	149	670	317	113	607
	Twitter-2017	1508	416	1638	515	144	517	493	168	573

 The two multimodal Twitter datasets are based on two public multimodal Named Entity Recognition (NER) datasets

Experimental Results

Results on the Two Multimodal Datasets

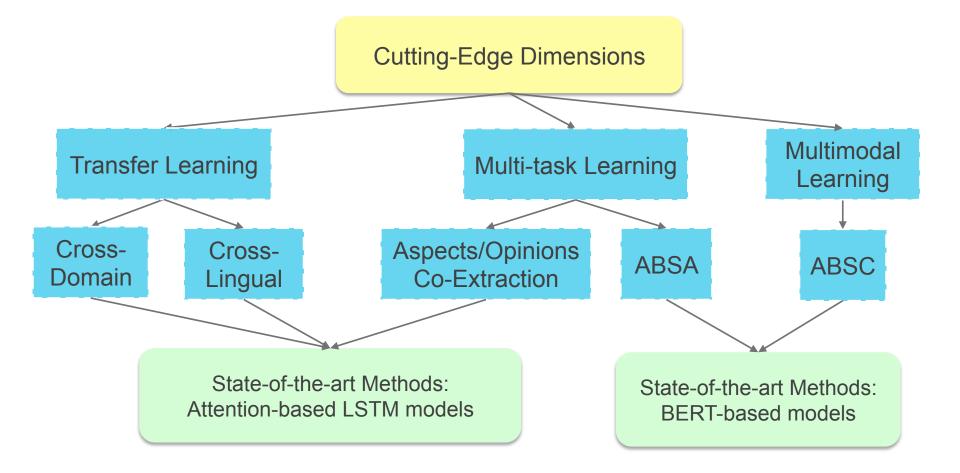
Modality	Method	Twitte	r-2015	Twitter-2017		
		Accuracy	Macro-F1	Accuracy	Macro-F1	
Visual	Res-Target	59.88	46.48	58.59	53.98	
Text	AE-LSTM	70.30	63.43	61.67	57.97	
	MemNet	70.11	61.76	64.18	60.90	
	RAM	70.68	63.05	64.42	61.01	
	MGAN	71.17	64.21	64.75	61.46	
	BERT	74.15	68.86	68.15	65.23	
	BERT+BL	74.25	70.04	68.88	66.12	

Experimental Results

Results on the Two Multimodal Datasets

Modality	Method	Twitte	r-2015	Twitte	r-2017
wouanty	Wethou	Accuracy	Macro-F1	Accuracy	Macro-F1
Visual	Res-Target	59.88	46.48	58.59	53.98
	AE-LSTM	70.30	63.43	61.67	57.97
	MemNet	70.11	61.76	64.18	60.90
Text	RAM	70.68	63.05	64.42	61.01
	MGAN	71.17	64.21	64.75	61.46
	BERT	74.15	68.86	68.15	65.23
	BERT+BL	74.25	70.04	68.88	66.12
	Res-MGAN	71.65	63.88	66.37	63.04
	Res-MGAN-TFN	70.30	64.14	64.10	59.13
Text +	Res-BERT+BL	75.02	69.21	69.20	66.48
Visual	Res-BERT+BL-TFN	73.58	68.74	67.18	64.29
	mBERT	75.31	70.18	69.61	67.12
	TomBERT	77.15	71.75	70.34	68.03
lia	nfei Yu and Iing Iiang Ada	nting REPT for	Taract_Oriont	od Multimoda	

School of Information Systems



Outline

- Transfer Learning
- Multi-Task Learning
- Multimodal Learning
- Summary

Summary

Thank you !

